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Abstract

In the framework of the proposed "continuous approach" to constrai-

ned optimization problems, we describe two new solution methods which re-

sulted from the research. The first is a continuous "inexact" method for sol-

ving systems of nonlinear equations and complementarity problems (along

the lines of the DAFNE Method), and the second is a continuous method

for solving the linear programming problems (along the lines of Karmarkar's

method) which is shown to be quadratically convergent.

Some numerical experience on a number of test problems is reported.
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1 . Introduction

This is the final report on the work performed from September 1986

to December 1991, under contract n. DAJA 45-86-C-0028 awarded to the

University of Rome "La Sapienza" on the research project "Numerical Opti-

mization", by the principal investigator Francesco Zirilli and his co-workers.

The objective of the research is described in par. 2, the results of the

research are described in par. 3, and some conclusions are in par. 4.

2. Objective of the research

The subject of the research was the field of those problems in con-

strained optimization which, starting from the linear programming problem,

can be formulated, with growing degree of generalization, first as linear

complementarity problems and second as nonlinear complementarity pro-

blems.

The objective of the research was to attack the above problems by
means of the so-called "continuous approach" to optimization (as opposed to

the so-called "pivotal" methods, such as the simplex method for linear pro-
gramming), with special consideration for the interesting cases of non-con-
vex or ill-conditioned problems, and problems with a very large number of

variables; and in particular the objective was to investigate the possibility of

applying to the above problems, suitably transformed into no-ilinear equa-

tion problems, the methods developed by the principal investigator and his

co-workers for solving nonlinear equations and global optimization pro-
blems, based on the numerical integration of suitable ordinary or stochastic

differential equations (refs. [1] to [4]).

3. Results of the research

During the development of the research the complementarity pro-
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blems proved to be much more difficult than it had been anticipated and it

became clear that the original plans where somehow too ambitious.

The final outcome of the research, if judged against the original

plans, is therefore admittedly less satisfactory than it was originally hoped;

nevertheless a number of interesting results have been obtained, so that we

feel that the research is still to be considered at least partially successful.

The main results of the research are contained in the two papers

numbered [5] and [6] in the list of references, which are described in the fol-

lowing paragraphs 3.1 and 3.2, and enclosed as Appendix 1 and Appendix 2.

Report on some work performed in other directions along the lines of

the original research plan, together with some related results of auxiliary

and preliminary nature, were described in the Periodic Technical Reports;

see also the papers numbered [8] and [9] in the list of references.

The research has also stimulated scientific contacts with several ita-

lian and foreign scholars.

The above results have been disseminated by means of the aforemen-

tioned papers on high-standard academic journals, and seminars at Accade-

mia dei Lincei, Rome (ref. [7], which originated paper [8]), at two meetings

of CECAM, Centre Europ~en de Calcul Atomique et Mol6culaire, the first

in Ermelo (The Netherlands), ref. [10], and the second at CECAM main of-

fice in Orsay (Paris), France, ref. [11].

3.1. The first paper

The first paper (ref. [5], and Appendix 1) can be summarized as fol-

lows.
A class of algorithms is developed for the numerical solution of non-

linear systems of equations and complementarity problems, based on the

fact that the solution of complementarity problems can be reduced to the so-

lution of systems of nonlinear equations by means of a transformation first

suggested by Mangasarian.
The method is "continuous" since it looks for the solution of the non-
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linear system by following the numerical solution trajectories of a suitable

differential equation, as in previous work of the same authors such as the

method implemented in the package DAFNE, described in Refs. [1] and [2].

At each numerical integration step, the DAFNE method requires the

solution of an NxN system of linear equations, and the cost of solving such a

system when a large numer N of unknowns is involved is the most important

part of the computation.

The present method can be called "inexact", since it computes only an

approximate solution of the above linear system, by means of a conjugate-

gradient procedure which is suitably stopped before "convergence", i.e. after

a number m_<N) of steps depending on the norm of the residual. For these

algorithms local convergence and Q-superlinear rate of convergence has

been proved. The algorithms have been used to solve three complementarity

problems derived from variational inequalities of mathematical physics very

successfully. The complementarity problems considered had up to 900 varia-

bles.

3.2. The second paper

The second paper (ref. [6] and Appendix 2) can be summarized as

follows.

The paper introduces a new method for solving the linear program-

ming problem, i.e. the problem of minimizing a linear cost function of seve-

ral real variables, subject to linear equality and inequality constraints.

Following Karmarkar [12], the paper considers the problem in the
"canonical" form

minimize f(x) = _TXx

subject to

Ax =-0

x0x = 1
xi> O , i- ,.. n
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where
= T

=(cl,...,%n) T,

= (el,...,en)T (1,,..,1)T

are real column vectors with n elements, A is a real m x n matrix of rank m,
with AS = J0, n > 2, m < n, and without loss of generality the objective fun-
ction f(x) may be "normalized", i.e. fx*) = 0 if x* is a solution of the problem.

In this paper it is shown that Karmarkar's method [12] is in fact equi-
valent to applying, to a suitable initial value problem for a system of ordina-
ry differential equations, the numerical integration method known as Euler's
method with variable stepsize, and obtaining the problem solution x* as the
limit, as t goes to infinity, of the numerically computed solution x(t) to the
initial value problem, starting from the initial point xo =(/n.

The proposed method is also based on the above interpretation of
Karmarkar's method, but with two main differences:

1) the initial value problem is based on a different system of ordinary diffe-
rential equations;

2) the numerical integration method is a linearly implicit A-stable method
with variable stepsize.

The resulting algorithm is shown to be quadratically convergent.
The computational cost of one step of the proposed algorithm is

shown to be of the same order of one step of Karmarkar's algorithm.
While one step of the classical simplex algorithm [13] for linear pro-

gramming is much cheaper, it may be expected that - due to the quadratic
convergence - the number of iterations needed to solve a linear program-
ming problem to a given accuracy, should be approximately independent of

the problem size n.
Some numerical results are also reported, which appear to support

such expectation.
The algorithm was tested on ten test problems, one originating from
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the operations of an industrial plant in central Italy, and the other nine pro-
vided by the System Optimization Laboratory at Stanford University.

The results are reported in Table 1 where n is the number of varia-

bles, m the number of constraints, k is the index of the first step that verifies

the stopping rule

f) _<! 108 . f(xo)

and vk is the corresponding value of f(x).
We note that the test problems with n,m < 5 are solved in about ten

steps, and that, while n and m vary by an order of magnitude, the number k
of steps needed to solve the problem varies only by a factor of two.

TABLE 1

Test problem m n k vk

1. ZIR1 304 543 21 2.41D-10
2. ADLIT[LE 57 141 21 3.16D-09
3. AFIRO 28 54 12 1.52D-12
4. BEACONFD 173 298 20 3.91D-09
5. BLEND 75 117 21 1.47D-12
6. ISRAEL 175 319 17 1.94D-10
7. SC105 106 166 13 1.36D-11
8. SC50A 51 81 14 1.48D-14
9. SC50B 51 81 11 7.84D-10

10. SHARE2B 97 167 21 1.78D-10

4. Conclusions

The research resulted in two new methods, one for solving comple-

mentarity problems, and the other for solving the linear programming pro-

blems, both based on the so-called "continuous" approach to optimization.



Successful solution was obtained for the complementarity problems
on test problems with up to 900 variables.

However, due to the great difficulty of complementarity problems - in

fact much greater than expected - the hoped for attack of much more diffi-

cult problems proved to be unsuccessful.

The linear programming method was shown to be quadratically con-

vergent, and was successfully tested on preliminary test problems with up to

about 300 variables and 540 constraints.
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An Inexact Continuous Method for the Solution

of Large Systems of Equations and

Complementarity Problems

F. ALUFFi-PENTINI - V. PARISI - F. ZIRILLP)'

Dedicato alla memor~a di Carlo Cattaneo, maestro ed amkco

RJASSUNTO - Si considera tin nuovo metodo per la risoluzione numerica sia di
sistemi di equazioni non lineari sia di problemi di compleinentaritt, che si basa sulfa ito
che la risoluzione di problemi di complementarith s. pu6 ricondurre alla risoluzione di
sislemi di equazioni non hineari mediante una traformazione suggerita da Mongasor-
ian. Ri metodo i "continuo" in quanto la sokizione del sustema viene cercata seguendo
le tr'aiettorie ott ente per integrozione numerica di un'opportuna equaozione differvnziale
- come in precedenti lavori degi autori - e si pu6 dire "inesatto' nel senso che fa
uso di tin metodo di gr'odienti con itgati, opportunamente arrestato "prima della con-
vergenza", per la risoluzione del sistema lineare che nasce neli'integrazione numerica
deil'equazione differenziale. 17 rnetodo ap pare particolarmente efficiente per problemi in
cui compare tin gran numero di voriabili indipenderati, nei quali la parte prevalente dello
sforzo di calcolo i rappresent ata dalla soluzione di tin sistema lineare ad ogni pasm di
integrazione. Vengono dirnostrate la convergenza locale e la con vergenza Q-superlineare
del metodo, e vengano presentai alcurii risultati numerici relatiti a problemi di corn-
plementarita della fisica matematica.

ABSTRACT - We consider a new method for the numerical solution both of non-
linear systems of equations and of cornplementauity problems, based on the fact that

(*)The research reported in this document has been made possible through the support
and sponsorship of the U.S. Government through its European Research Office of the
U.S. Army under contract n. DAJA 43-86-C-0028.
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the solution of complementarity problems can be reduced to the solution of nonlinear
systems of equations by means of a transformation first suggested by Mangasarian. The
method is "continuous since it looks for a solution of the nonlinear system by following
the numerical solution trajectories of a suitable differential equation - as in previous
work by the present authors - and can be called 'inexact" since it uses a conjugate-
gradient method which is suitably stopped "before convergence" for the solution of the
linear system arising in the numerical integration of the differential equation. The
method appears to be particularly effective for problems involving a large number of
independent variables, where the computational cost is dominated by the solution of a
linear system at each integration step. Local convergence and Q-superlinear convergence
of the method are proved, under suitable assumptions, and some numerical experience
on complementarity problems of mathematical physics is presented.

KEY WORDS - Numerical analysis - Nonlinear equations - Mathematical pro-
gramming - Complementarity problems.

A.M.S. CLASSIFICATION: 65H10 - 65K05

1- Introduction

Let IRN be the N-dimensional real euclidean space, let x =
(XI, 2 ,. .. ,XN) T E RNv be a vector, and for x,y E aRv let (x,y) =
N

Xy, Ilxll = (x,x)/ 2 be the euclidean scalar product and norm; where

necessary will indicate also the matrix norm induced by the eu-
clidean vector norm. Given f : IR v - IRN we will be concerned with two

classes of problems in this paper: the problem of solving the system of
simultaneous nonlinear equations

(1.1) f(x) = 0

that is: find x" E IRN such that f(x') = 0, and the complementarity
problem

(1.2) x > 0

(1.3) f(x) > 0

(1.4) (x, f(x)) = 0

where x > 0 means zi 0, i = 1,2,...,N, and similarly f(x) > 0 means
fi(x) >_ 0, i = 1,2,... ,N, fi(x) being the components of f, that is: find
x" such that: x' > 0, f(x*) > 0, (x',f(x*)) = 0.



(3] An Inexact Continuous Method for the Solution etc. 523

The importance of the problem of solving a system of simultaneous
equations is well known. When f(x) = Ax + b is an affine map the
(linear) complementarity problem has been considered by COTTLE and
DANTZIG in [1] and contains as special cases the linear programming and
the quadratic programming problem. In the case when f(x) is a possibly
nonlinear function of x the (nonlinear) complementarity problem is a
rather general problem and contains as special cases the Kuhn-Tucker
first-order necessary conditions for the nonlinear programming problem
and has been widely studied; see for example GOULD and TOLLE [2).

The linear and nonlinear complementarity problems have applica-
tions in such diverse areas of flow in porous media [3], image reconstruc-
tion [4], [5], game theory [6].

In this paper we will be concerned with the problem of the numerical
solution of nonlinear systems of equations and complementarity problems.
Usually complementarity problems are approached numerically with piv-
otal methods (for example the simplex method for linear programming).
The pivotal methods are usually of the "step by step" improvement type,
that is, given a problem for which a solution is sought, the standard
approach is to attempt to define recursively a sequence of approximate
solutions which have the basic property of making an improvement in a
suitable "objective function". When the problem satisfies some convexity
and/or monotonicity assumptions the pivotal methods are guaranteed to
converge and if only a moderate number of independent variable is in-
volved (up to few hundreds) their numerical performance is satisfactory.

In recent years there has been a growing interest in the use of con-
tinuous methods in nonlinear optimization; see for example ALLGOWER
and GEORG [71 for a review of simplicial methods in the computation
of fixed points and the solution of nonlinear equations, and BAYER and
LAGARIAS [8] for the interpretation of Karmarkar's linear programming
algorithm as a method that follows a trajectory of a suitable system of
ordinary differential equations. In particular the present authors have
developed a method for solving systems of nonlinear equations based on
the numerical integration of an initial-value problem for a system of or-
dinary differential equations inspired by classical mechanics [9], [10], [11],
[121 and a method for global optimization based on the numerical inte-
gration of an initial value problem for a system of stochastic differential
equations inspired by statistical mechanics [13], [14], (15]. In section 2 the



524 F. ALUFFI-PENTINI- V. PARISI -F. ZIRILLI [4]

algorithms introduced in [10] to solve systems of nonlinear equations are
modified to obtain an "inexact" solution of the linear systems appearing
in each iteration in the spirit of DEMBO, EISENSTAT and STEIHAUG [16].
These new algorithms are particularly effective for problems involving a
large number of independent variables where the computational cost is
dominated by the solution of the linear system at each step. Under suit-
able hypotheses local convergence and Q-superlinear convergence of these
new "inexact" algorithm for nonlinear systems of equations are proved.
In section 3 the complementarity problem is transformed into a nonlin-
ear system of equations following MANGASARIAN [17] and therefore the
algorithms previously developed provide a class of locally convergent Q-
superlinear methods, which are not of the "step-by-step improvement"
type, for the solution of complementarity problems. Finally in section 4
some numerical experience obtained with the algorithms of section 2 and
3 on some complementarity problems of mathematical physics is shown.

Some of the results of this paper have been announced in [18].

2- Some inexact algorithms for nonlinear systems of equations

Let f(x)=(fI(x),f 2(x),...,fN (X)) T E RN, where f(x), i= 1,2,..., N,
are real-valued regular functions defined for x = (z, X2, . . . ,Zv)T E IR .

In order to solve the system of simultaneous equations

(2.1) f(x) = 0

we define

N

(2.2) F(x) = f(x)T f(x)= ff?(x).
i=1

It is easy to see that x" is an isolated minimizer of F(x) and F(x) =

0.
In [9], [10], [11], [12] the idea has been proposed and developed of

associating to the nonlinear system (2.1) the following system of second-
order ordinary differential equations:

d~x. dx
(2.3) y -j(t) = -gD.d-(t) - VF(x(t)) t E [0, +00)
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Where D is a N x N positive symmetric matrix, p,g are positive con-
stants, VF(x) is the gradient of the function F(x) with respect to x.
The equation (2.3) represents Newton's second law (mass x acceleration
= force) for a partide of mass 1A moving in IRN subject to the force -VF
given by the potential F and to the dissipative force -gDdx/dt.

If x" is an isolated minimizer of F(x) then x(t) = x*, V t E [0, +0),
is a solution of (2.3); consider the Cauchy data

(2.4) x(O) =

dx
(2.5) dx0) = 7o

and let x(t,fo,qo) be the solution of the Cauchy problem (2.3), (2.4),
(2.5).

It can be shown that there exists a neighborhood U C IP2"' of I E
R2N such that if ] E U we have:

(2.6) lir lx(t, o, 70) - x11 = 0

Hence in order to solve the system of nonlinear simultaneous equa-
tions by integrating numerically the Cauchy problem (2.3), (2.4), (2.5),
we are primarily interested in the equilibrium points reached asymptoti-

cally by the trajectories of (2.3) (hopefully solutions of (2.1)) rather than
in the accuracy of the numerical scheme. So that of particular interest are
numerical methods enjoying a special stability property called A-stability
[101.

Let t E IR, let Y,e0 E IR' and W(t,y) E IR" be a given function
continuous in t and continuously differentiable with respect to y, such
that the initial-value problem:

(2.7) dy(t) = (t,y) t E (0, +c0)

(2.8) y(0) = 0

has a solution y(t, o) for t E [0, +00).
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The simplest choice of A-stable linearly implicit method to integrate
numerically (2.7), (2.8) is:

(2.9) (I- hD.)(y,+i - y.) = ho. n = 0, 1,2,...

(2.10) yo =

where yn is the numerically computed approximation of y(nh, a), I is

the identity matrix acting on IR', h > 0 is the stepsize, for n = 0,1,2,...

t= = nh, j,, = tny,), 'On = t(t,,yn) where t(t,y) = O5p/Oy is the
jacobian of V with respect to y. We note that when 9(t,y) = Ay is a

linear map (2.9) reduces to the backward Euler method.
After rewriting (2.3) as a first-order system

dx(2.11) dt - v

(2.12) dv = - I VF(x)
dt Y v

formulae (2.9), (2.10) with variable stepsize h,n = 0, 1,... (i.e. to = 0.
n-i

tn = _ hi, n = 1,2,...) are applied to (2.11), (2.12), (2.4), (2.5). In this
i=0

case the map (P: IR2N - R T2V will be given by

(2.13) Wp V~ - .Dv - .VF(x)]

so that its jacobian matrix is given by

(2.14) 0(x)= - - D

where

(2.15) L(x) = 2 JxTx + Zf.(x)f(x)]

J(x) = 8f(x)/Ox is the jacobian of f with respect to x and Hi(x) is the

hessian of fi(x).
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Let s,. = x,, x,, n = 0, 1, 2,...; after some simple algebra (2.9)
becomes:

(2.16) [L. + 1~ (t-I + gD sv)VF,+]!v

Sn

(2.17) v,+i=, n = 0,1,2,...

(2.18) Xn+i = Xt + Sn

where L, = L(x,), VFn = VF(x,). In order to avoid the computation
of Hi(x), i = 1,2,..., N, at each iteration and since we are looking for

N
points x" such that f(x*) = 0 the term Z f,(x) in (2.15) is dropped so

i= I

that L(x) is substituted by

(2.20) !(x) = 2Jr(x)J(x).

Equation (2.16) will be replaced by

(2.21) A,Sn = b,,

where

(2.22) A(x,h) = L(x) + - [ + gD

and

(2.23) An = A(x,h,)

(2.24) bn = -VF, + -! Vn
hn

we note that the matrix An is symmetric and positive definite.
We have the foowing theorem:
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THEOREM 2.1. Let f : IRN - R v be twice continuously differen-
tiable, F(x) = f(x) Tf(x) and L(x) be given by (2.15). Let x" E IRN be
such that f(x*) = 0, J(x*) is nonsingular (i.e. x" is a nondegenerate
solution of the system (2.1)) and the following Lipschitz conditions holds:

(2.25) IIL(x) - L(x')ll _ "ylix - xiU V x E S = {xj lix - xl < 6}

for some constants - and 6 greater than zero. In the iteration (2.21),
(2.17), (2.18) let {h,,},n = 0,1,2,..., be a sequence of positive numbers
such that

(2.26) lim h,, = oo

then there eziss h > 0 such that for h,, > h, n = 0,1,..., x is a point
of attraction of (2.21), (2.17), (2.18) and the rate of convergence is

(i) Q-superlinear if h- 1 < -tiIlVF(xn), 71 > 0, n > no, for some 71,
no > 0.

(ii) Q-quadratic if h; < 72IVF(x, )112, -72 > 0, n > no, for some -/2,
no > 0.

PROOF. Let us rewrite (2.21), (2.17), (2.18) as

(2.27) x, +1 = G(xn,hn) + hA A,-,'-(X" - X 1 ) n= 0,1,2"...

where

(2.28) G(x,h) = x - A(x,h)-'VF(x)

with the initial conditions xo = fo,x-I = fo - h-ei, and h-1 = ho,
that is (2.21), (2.17), (2.18) can be interpreted as a two-step iteration.
Since x° is a nondegenerate solution of the system (2.1) x" is an isolated
minimizer of F(x) and VF(x*) = 0. Moreover for h > 0 the symmetric
matrix A(x,h) is positive definite so that A(x,h) - ' exists that is G(x,h)
is well defined for x E IRN and h > 0 and x" is fixed point of G(x, h).
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Let # = JIL(x')-'ll and let 6 E (0,(20) - ') then there exists 6 > 0
and h > 0 such that:

(2.29) IIL(x*) - A(x,h)ll !< Vx E S = { X1 lix - X-11 < 6}(2.29) |$

Vh>

In fact

lIL(x) - A(x, h)Il < lIL(x') - L(x)Ul + liL(x) - A(x, h)Il

since L(x*) = L(x*) there exists 6 such that:

IIL(x') - L(x)l <5 1 V x E S

and for a suitable h > 0

(2.30) IIL(x) - A(x,h)ll = IIl + gD < :- V h >
h h 2-

From (2.29) and the perturbation lemma (lemma 2.3.2 p. 4 5 of OR-
TEGA and RHEINBOLDT [19]) it follows that A(x,h) - l satisfies

(2.31) IIA(x,h)-'Il < V x E S, V h >

Moreover

(2.32) IG(x,h) - x'll < (x,h)llx - x*ll V x E S, V h > h

where

(2.33) w(x) = a [IA(x,h) - L(x)ll + JIL(x) - L(x')j + liq(x)jl]

and

q(x) - I= V(x) - VF(x-) - L(x')(x - x')I1 x x"{ix - x' xx
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In fact

IIG(x,h) - x'll = IIA(x,h) - [A(x,h)(x- x') - VF(x)] II <

< a{ [lUA(x, h) - L(x)ll + IIL(x) - !(x')ll] Ix - x'll+

+ IIL(x*)(x - x-) + VF(x*) - VF(x)ll}

Moreover from (2.25) and proposition 3.2.5 p. 70 of [19] we have

(2.34) llq(x)ll -<illx - x11 V x E S

Hence from (2.30), (2.25), (2.33) and (2.34) for some constants a2, a3 > 0
we have

(2.35) w(x,h) :_ a,-1 + a4l x -xxJ) Vx E S, Vh >

From (2.27), (2.31), (2.32) for x,, x.-. E S and h, h,- > h we have

llx.+,-x'll <

< lIG(x.,h.)-x'll+ h h. A-[

(2.36) <[w(x ,h) + P2] IIjx .- x'll + llx.- - 11 <

[0 3 + C12 + P'] I1 - xII + !- - -X

Moreover from (2.36) eventually changing the values of 6 and h we
have

02 /a0 1

h- + Pa<

(2.37) 3 + h2  2

74=h2  2

so that

(2.38) llxvi+, - x'1l < 731ix. - X'II + - 4 1lXn-i - x'11
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with a4 = 73 + 74 < 1 that is x.+i E S. In particular we have shown that

(2.39) ir x," = X,
n , 00

that is x" is a point of attraction of (2.27).
In particular for n > no > 0, xn E S, using (2.36) the required

order-of-convergence estimates follows from:

(Ixn+t - x'*j _ [:5 h-. + a3ixf - x'11] Jjx - x'11+
(2.40) 

1 nIlx

+ Aa 1. - X.- for n o > 0
h,,,hn,-1

and the fact that

(2.41) llVF(xn)I -< (IIL(x')Il + c)Jlx. - x'11

where lir En = 0.

Using the method given by (2.21), (2.17), (2.18) requires the solution
of the linear system (2.21) at each step. Computing the exact solution
with a direct method such as Gaussian elimination is very expensive when
a large number of unknowns is involved and may not be worthwhile when
xi is far from x*. In this case it seems natural to solve the linear system
(2.21) by an iterative procedure and to accept an approximate solution.
In particular since the matrix An is symmetric and positive definite we
may use conjugate gradients. When the method given by (2.21), (2.17),
(2.18) is used to solve (2.21) with an iterative procedure, accepting an ap-
proximate solution, we will describe this procedure as an inexact method.

Let in be the approximate step computed by the iterative procedure
when solving (2.21) and

(2.42) rn = An in - bn

be the residual. When rn = 0 the linear system is solved exactly. Let
us assume that the approximate step computed in satisfies the following
condition:

(2.43) lirnli < 4,1IbIl[ n = 0, 1,...
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for some forcing sequence {i3,), n = 0, 1,... We have the following theo-
rem:

THEOREm 2.2. Let f : IRvN ---, ]Rjv be twice continuously differ-
entiable, F(x) = f(x)Tf(x) and L(x) be given by (2.15). Let x" E JN"
be such that f(x*) = 0, J(x*) is nonsingular and the following Lipschitz

condition holds:

(2.44) llL(x) - L(x')l <_ llx - x*'1 V x E S = {xj lix - x'i < 6}

for some constants 'y,6 greater than zero. In the iteration (2.21), (2.17),
(2.18) let {hn}, n = 0, 1,2,..., be a sequence of positive numbers and let
the linear system (2.21) be solved approximately in such a way that the
residuals r, given by (2.42) satisfy the condition (2.43) for some forcing
sequence {i3 }, n = 0,1, ....If 0 < 4n < 3m < 1, n = 0, 1,..., then
there exists h > 0 such that if h,, > h, n = 0,1,..., then x" is a point of
attraction of the inexact method (2.21), (2.17), (2.18).

PROOF. Since J(x') is nonsingular and L(x') = 2J(x*)TJ(z" ) we
define the following norm:

(2.45) Ixl. = IIL(x*)xll V x E I ,

we have

(2.46) 1

where

(2.47) ui = max {IL(x*)ll, IlL(x') - l 1}

Moreover it is easy to see that under the stated hypotheses for any
c> 0 there exists 6 > 0 and h > 0 such that:

(2.48) IlA(x,h) - L(x')il _5 V x E S = {xf lix - x-11 < 6}, h > h

(2.49) IIA(x,h)-'-L(x)-ll< Vx E S = {xjlix-xll < 6}, h >
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IIVF(x) - VF(x*) - L(x*)(x - x')11: lx - x'11
(2.50) Vx s= ES xII~X- x11- < 6}

We have
(2.51)

L(X)(R+i- X*) = [I + L(x*)(A- 1 - Lx

-{,+ (A. - LX)(,- X-) - b[- - VF(x*) - L~*(k,- x)j}I

and taking norms:

Il-1- xiI1. 1 [ + IIL(x')I I IA-' - L(XY1-III

(2.52) J{Ir.II + IIA, - L(x')II II-kn - x11l+

+1- b,- VF(x-) - L(x*)(i, - x*)IIJ

from (2.24) if S., E S and h, > h using (2.48), (2.49), 2.50) we have:

lkni- X*1. < 11+ ALE [ flh1vF(k.)II + 2EIi*, -~l

( 2 .5 3 ) + 1 1 + ) I i 0 1 + I X

moreover from

(2.54) VF(i*,) = L(x*)(*,, - x*) + [VF(*k,) - VF(x*) - L(x*)(*, - x*)]

we have

(2.55) lIVF(k'-)l _Ilk, - x11. + _,11i. - x11.

Finally from (2.47), (2.53), (2.55) we have:

- x.[(+I + Epi + Ep, (2 + -!

(2.56) -Ilk. - x11l.+[1 + UJ1ek (1 + X3acI~ - 11 'I

= asll*, - x*ii. + a6 0Ix,1 - xIi
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where

=f [+ /1 1e] [0.m(1 + -C)+i (2 + )
(2.57) 6  =2

=i+ Al )(1 + A2(

choosing the values of c and h so that a5 + a6 < I from (2.56) we have
that if *,,*n-1 e S then x,+, E S and

lir n , = X
n-o

THEOREM 2.3. Let f : pN IV be twice continuously differ-
entiable, F(x) = f(x)Tf(x) and L(x) be given by (2.15). Let x" E JRN

be such that f(x') = 0, J(x*) is nonsingular and the following Lipschitz

condition holds:

(2.58) IIL(x) - L(x')II :S "llx - x*11 V x S = {xj jjx - x11 < 6}

In the iteration (2.21), (2.17), (2.18) let {h,,}, n = 0,1,..., be a
sequence of positive numbers and let the linear system (2.21) be solved
approximately in such a way that residuals rn given by (2.42) satisfy the
condition (2.43) for some forcing sequence {,,,, n = 0,1,...}, such that

0 < n,, <4m. < 1, n = 0,1, .... Then there exists h such that if h,n > h,
n = 0,1,...,x* is a point of attraction of the inexact method (2.21),
(2.17), (2.18) and the rate of convergence is:

(i) Q-superlinear if h-1 < t7IIVF(n)j[, 71 > 0, n > no for some
7, no> 0 and Ur On = 0

(ii) Q-quadratic if h- 1 < -t2jiVF(*.)I2, 72 > o, n > n 0 and ,, <

"t2IIVF(*.)II, 72 > 0, n > no, for some 72, no > 0.
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PROOF. From Theorem 2.2 we have that x" is a point of attraction
of the inexact method (2.21), (2.17), (2.18) so that we can assume that
lir k, = x" and it remains to prove the rate-of-convergence results.

We have:

kn~ - x A = + [An - L(x*)] kn- X)(2.59)f I
(2.59 - [-b, - VF(x-) - L(x-)(in - x-)]}

and taking norms
I1kn+l - x1ll _ IIA'II [lirnil + IIA- L(x')ll ilk, - x1ll+

(2.60) + IIVF(*k) - VF(x') - L(x')(:i. - x')ll+

+ A h,---- llx, - X--11]+ hn Ii- ni]

Let e,6,h be chosen in such a way that (2.29), (2.34), (2.35) hold
then there exists n' such that for n > n'+ 1, *, E S = {xi lix-x'l < 6}
we have:

[1*.+,- x* :5 a [ .llVF(kn)ll+

(2.61) + (c2+. + k 3lk - x'1l) Ili. - x'i1+

+ Q11. - x'11' + X-(1 + 4.)ll. - kn-ill

and the desired rate-of-convergence results follow from (2.41).

3- Complementarity problems and nonlinear systems

Let f : IR N  IR N be given, the complementarity problem associ-

ated with f is

(3.1) x > 0

(3.2) f(x) > 0

(3.3) (x, f(x)) = 0
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and let e : R - IR be a strictly increasing function such that 8(0) = 0.
In [17] MANGASARIAN has shown that x* E IRN is a solution of the
complementarity problem (3.1), (3.2), (3.3) if and only if x" is a solution
of the system of nonlinear equations

(3.4) g(x) = 0

where g(x) =(gl(X),92(X),...,N (X)) T and

(3.5) g,(x) = V(jf,(x) - xI) - (fi(x)) - (z,) i = 1,2,...

for later purposes let us introduce

(3.6) G(x) = g(x) Tg(x)

DEFINITION 3.1: Let x* E IR N be a solution of the complementarity
problem (3.1), (3.2), (3.3) we will say that x" is nondegenerate if x" +
f(x-) > 0.

DEFINITION 3.2: Let f be continuously differentiable and J(x) =
9f/Ox be the jacobian of f with respect to x, if for fi = 1,2,...,N each
principal minor ((Of,/zxj)),i,j =1,2,... , is nonsingular we say that
J(x) has nonsingilar principal minors.

In [17] 1MANGASARIAN has shown that if x° is a nondegenerate solu-
tion of the complementarity problem (3.1), (3.2), (3.3) such that J(x ° )
has nonsingular principal minors and o : R ---. IR is a strictly increasing
differentiable function such that dO/dt(O) + dG/dt(t) > 0, V t > 0, then x °

is a solution of the nonlinear system (3.4) and ag/&x(x*) the jacobian of
g with respect to x is nonsingular.

For simplicity we choose 0(t) = t/2 so that in a neighborhood of
a nondegenerate solution of the complementarity problem (3.1), (3.2),
(3.3) the function g(x) given by (3.5) has the same regularity properties
of f(x). Given the local character of the convergence theorems of section
2 this is satisfactory. In section 4 the method for solving nonlinear system
described in section 2 will be applied to (3.4) with 0(t) = t/2 for some
test complementarity problems.
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4 - Numerical experience

The inexact method (2.21), (2.17), (2.18) has been implemented as
follows:

i) since A, is symmetric and positive definite the linear system (2.21)
has been solved by the conjugate gradient method (C.G.) introduced
by FLETCHER and REEVES [20]. This procedure solves an N x N
linear system in at most N steps. Hovewer we stop the conjugate
gradient procedure after a number of steps which is usually consider-
ably lower than N. In fact let s(') be the approximate value for the
solution s,, of the linear system (2.21) obtained as the result of step
k of the conjugate gradient iteration; the iteration is stopped after
step m if

IIA~s(-) - b.11 < / .1lb.II

ii) We have chosen:

0= 0 0

D = I (the identity matrix)

ns() =0 n = 0, 1,...

and the following very simple variation laws for the time integration
step-length h, and the forcing sequence j 3 :

h+= rnin(10h,,hm,) n = 0,1,2,...

with h0 = 1, hma1 = 10"

=n ~ 6 , ,, n = 0,1,2....

where 0 is given and e,, is automatically chosen by the program
among the two values 0.1 and 0.5.

iii) The program stops in any case the conjugate-gradients iteration after
N steps in order to avoid possible non termination due to the finite
arithmetic of the computer.
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Finally the method given by (2.21), (2.17), (2.18) (i.e. exact solution
of the linear system (2.21)) is obtained simply setting I0 = 0.

The stopping rule adopted is G(k.) < 10- 1' for the inexact method
and G(x,) <_ 10- 10 for the "exact" method (i.e. i3 = 0). These methods
have been coded in the Pascal programming language and the program
has been run on a Hewlett-Packard 9816 computer.

We have tested the proposed algorithm on three complementarity
problems of which two are linear and one is nonlinear.

The first problem considered arises as a one-dimensional free-boun-
dary problem in the lubrication theory of an infinite journal bearing,
i.e. a rotating cylinder separated from a bearing surface by a thin film of
lubricating fluid [21). The finite-difference approximation used by CRYER

in [21] leads to

PROBLEM A (called Problem 3D by Cryer): Find x, w E IRN such
that

(4.1) w=q+Mx, w>0, x>0,

(4.2) (w,x) =0

where M = ((Mi)), i,j = 1,2,... ,N, is an N x N matrix with elements
Miy given by

M i = -(H i+ 1/ 2)3  if j=i+1,

M;1 = [(Hi+112)3 + (H_ 112)3), if j = i,(4.3)

M~i = - ( H _- 1/ 2)
3 ,  if j=i- 1,

MA, = 0 otherwise

and q = (ql, q2,... ,qN)T is a vector with elements q, given by

T
(4.4) q- N+ [Hi+1

I
2 - H- 1I2], i = 1,2,.. .N

where

(4.5) Hi* 1/2 + H i :) T

mmmmmmmm~~~ N + Immmmmm mm
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and the function H(y) is given by
1

H(y) = + cos ry) >0

with

(4.7) T=2, E=0.8

We note that the matrix M given by (4.3) is symmetric and positive-
definite.

The second problem arises as a two-dimensional free-boundary prob-
lem in the theory of the steady-state fluid flow through porous media.
Some of these problems can be formulated as a variational inequality af-
ter an ingenious transformation proposed by BAIOCCHI and others (ref.
[131). The discretization used on the "model problem" ([3], p. 4) leads to

PROBLEM B: Find x, w E IRN such that

(4.8) w=q+Mx, w> 0, x>0,

(4.9) (wx) = 0

where M, an N x N real matrix, and q = (qj,q 2 ,. .. ,qN) E IRN are

defined below.
Given n, n. (positive integers) and X, Y (positive real numbers), let

Dz = X/n, + 1,

Dy = Y/n. + 1,

a = Dy]Dx,

let A be the n, x n, tridiagonal matrix having all the main diagonal
elements equal to 2(a + 1/a), and the paradiagonal elements (i.e. im-
mediately above or below the main diagonal) equal to -a, and let B be
the n,. x n. diagonal matrix with diagonal elements equal to -1/a. The
matrix M is an n x n matrix with a block-tridiagonal structure (n. x n,
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blocks), having each main-diagonal block equal to the matrix A, and each
paradiagonal block equal to the matrix B. We note that M is a positive-
definite symmetric matrix. The vector q is defined as follows. Given W
(0 < W < Y), and using the Kronecker symbol bij, let

9L (Y) = -(Y - Y)"2

9R(Y) = 1(W - Y), if Y < W,
2

9R(Y) =0, if Y>W,

gD(z) = Y 2/2 - (Y 2 
- W 2)(x/2X),

gu(z) = 0,
riT = -DxDy + iagL(jDy) + bi,,agR(jDy)+

+ b,(1/a)gD(iDx) + 6&,j(1/a)gu(iDz),

i = 1,2,...,n n., j = 1,2,...,n , .

The elements qj,q 2,... ,q, of q are given by

(4.10) qk =Ti, with k=(j-1)n,+i

Our last problem, which is defined below, can be interpreted as a
finite-difference approximation of a nonlinear variational inequality.

PROBLEM C: Find x,w E IRN such that

(4.15) w=Mx+p(x)+q, w>0, x>0

(4.16) (w,x) = 0

The problem dimension N, the quantities Dx, Dy and the matrix
M are defined as in problem B, given n.,n,,X,Y. The nonlinear term
p(x) is a vector in IRN with components pi = x,, i = 1,...,N. The
vector q = (ql,q 2 ,...,q) T is defined by equation (4.10) where ri =

DzDysin(27riDx/X), i = 1,2,...,n=, j = 1,2,...,n , .
The numerical results obtained with the previously described meth-

ods on Problem A, B, C are shown in Table 1. 2, 3 respectively.
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Table 1 - Results of Problem A

7)o1 10-0

n. of total n. n. of total n.
steps of C.G. steps of C.G.
(2.21) steps (2.21) steps

30 10 79 7 210
40 12 121 8 320
so 16 238 8 400
60 14 240 8 480
70 15 318 9 630
80 15 369 9 720
90 19 650 9 810

100 18 556 10 1000

Table 2 - Results of Problem B
(with X = 1.62, Y = 3.22, W = 0.84)

1o=1 170-0

D. of total n. n. of total n.
n, N steps of C.G. steps of C.G.

(2.21) steps (2.21) steps

6 9 54 13 170 6 324
8 12 96 1s 250 8 768
10 15 150 17 483 10 1500
12 18 216 19 T46 12 2592
14 21 294 19 867 14 4116
20 30 600 34 2405 21 126000

Table 3 - Results of Problem C
(withX=5, Y=5)

no_1 ?77 0
n. of total n. n. of total n.

nz n. N steps of C.G. steps of C.G.
(2.21) steps (2.21) steps

5 5 25 5 37 4 100
10 10 100 6 99 5 500
15 15 225 8 278 6 1350
20 20 400 10 407 6 2400
25 25 625 10 535 8 5000
30 30 900 10 893



542 F. ALUFFI-PENTINI - V. PARISI - F. ZIRILLI (22]

In tables 1, 2, 3 the adavantage of using "inexact linear algebra" with
respect to complete solution of the linear system for problems A, B, C is
shown, and the advantage is increasing with the number of unknowns.
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ABSTR-CT

A new method to solve linear programming problems is introduced. This method
follows a path defined by a sy.stem of o.d.e., and for nondegenerate problems is
quadratically convergent.

1. INTRODUCTION

Let R" be the n-dimensional real Euclidean space, and
x=(x ..... .r,)Er where the superscript T means transpose. For x.
y E R" let xry be the usual Euclidean inner product. and let e ( . .
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A linear programming problem consists in minimizing a linear function over
a region defined by linear equality and inequality constraints. We wkill say
that a linear programming problem is in canonical form when it is written as
follows:

minimizecrx (1.1)

Re "

subject to

Ax= 0, (1.2)

erx 1=I, (1.3)

x 0. (1.4)

with side conditions Ae = 0, where

A . ..... in< n.

and c E R" are given, and the inequality (1.4) is understood componentxwlse.
that is,

0tl, j1.

Moreover, we assume that the matrix A iz of rank m.
We note that on these hypotheses (1/n)e is a feasible point, so that the

feasible region is not empty.
The simplex method applies to linear programming problems in standard

form. that is.

minimize dry (1 5)

subject to

Cy b. (1.6)

Y 0. (1.7)

where d E R'. b E R'. C E R"', r 4 s. are given, and the inequalities (1.6).
(1.7) are understood component-,,ise. In [11 it has been shown that a linear
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programming problem in standard forrii with a finite solution can alwax s be
reduced to canonical form. Moreover. Kannarkar assumes that the ohjective
function of the problem (1.1)-(1.4) is such that

-Z = cr X
* 

= 0

for any feasible pint x* that is a solution of the linear proaramming problem
1.i)-(L.4). The problem (1.1)-(1.-4) \ith this extra assumption is called a

problem in canonical form with i nornalized objecti\e Function. In our %%ork
te assumption of havinz a normalized objectie function is not neQvssarv.
however, since this asstmption implifie-. Nome of the folloing alkebraic
manipulations, we \%ill keep it.

Let fl denote the huhspace fl = (x E R"I Ax 0). let .1 be the simplex
=(x E R" ix > 0. erx = 1). and finally let "

he the polytope of the feasible p)ints. Then the problem (1.1)-(1.4) can bt
revritten as follows:

minimize cTx. (1.9)
1 e%

In this paper we will introduce a new method to solve linear program-
ming problems in canonical form with a nonnalized objective function. This
class of problems is the one considered by N. Karmarkar in his celebrated
paper [21.

In the late 1940s G. B. Dantzig [31 developed the simplex method to
solve linear programming problems. In 1972 V. Klee and G. L. Mint\ [4]
showed that the worst case complexit. of the simplex method is combinato-
rial. Here the term "complexity** means the number of elerrentar operations
necessar, to solve a linear programming problem in the standard form
(1.3)-(1.7). Since the simplex method finds the solution after , finite number
of iterations. Klee and Minty [41 \, ere able to give an example where the
simplex method has complexity

p = O(rs 2 ').

Note that in (1.5) y e R'. Moreoer. in 1981 S. Smale in [5] showed that the
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"average" complexity of the simplex method is

p = O(rs2 ),

where r, s are the dimensions of the matrix C in (1.6).
In spite of its worst case combinatorial complexitv, the simplex method

has been very successful in solving linear programming problems. The
feature of the simplex method responsible for its worst case combinatorial
complexity is that it moves on the boundary of the feasible region

Q= (ye R'ICy >b. y >,0}.

In recent years a great deal of effort has been spent in the attempt to find a
new algonthin for linear programming whose complexity in the worst case is
polynomial. It is believed that these new methods will go through the
interior of the feasible region Q.

In 1979 L. G. Khachijan [6 introduced the first method of this class,
called the ellipsoid metIod. The worst case complexity of this method is

p = O( s').

Here. howe'er, the meaning of the term 'complexity" has been slightly
changed. In fact the ellipsoid method does not step after a finite number of
iterations, so that "'complexity" means the number of eleientar. operations
necessary to arri,e in a predetermined neighborhood of the solution. More-
over, the method introduced by Khachijan is only of theoretical interest,
since its practical perfonnance is rather poor.

In 1984 N. Kanuarkar [2] presented a new linear programming method of
polknomia] worst case complexitY

p=O(s 3 ).

This algorithm is called the projective iethod when applied to a linear
programming problem in canonical form with a normalized objettive func-
tion. This algorithm is of theoretical and practical importance.

Since 1984 a great deal of work has been done in deeloping new
methods for linear programming. Several -interior point algorithms" have
been proposed. P. E. Gill. W. Murray, M. A. Saunders, J. A. Tomlin. and
N1. H. Wright in [7 ha'e interpreted Karmarkar's algorithm as a "logarithmic
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barrier method" and have suggested a new algorithm with good practical
performance.

In the framework of logarithmic barrier function methods we can recall
the work of several authors. In (8] J. Renegar lowered Karmarkar's complex-
it%, bound. In [91 C. Gonzaga lowered Rentgar's complexity bound. In [10] M.
In and H. Imai. with the hypothesis of being able to perform exact line-
searches, introduced a quadratically convergent algorithm for the linear
programming problem. In [11] N. Megiddo studied the geometr'-al proper-
ties of the paths derhed from "weitghted logzarithmic barrier fur rtI(As
Finally, J. A. Tomlin in (121 reports on conniderable numerical experimenta-
tion with this kind of algorithms.

In this paper, as suggested by D. A. Bayer and J. C. LUgarias in [13], we
will show that Karmarkar's projectie method can be obtained )y applying
Euler's method with variable stepsize to a suitable initial %alue problem for a
system of ordinan- differential equations. In fact- Karnarkar's method obtains
the solution x* of the linear programmine problem by computing

Ilira x t. -e (1.10)
t-. fl n)

where x(t,(1/n)e) is the solution of a system of ordinar\ differential equa-
tions with initial condition (1/n)e, using Euier's method with variable
stepsize. The idea of obtaining the solution of nonlinear programming
problems as limit points of the trajectories of systems of ordinary differential
equations has been widely used, for a review see [14]. In particular, in
[15-17] quadratically convergent algorithms for nonlinear systems of equa-
tions have been obtained from methods based on the numerical integration of
trajectories of systems of ordinar" differential equations.

The interpretation of Karmarkar's projective method as the numerical
solution of an initial value problem raises two natural questions:

(i) Can the system of ordinary differential equations used in Karmarkar's
projective method be changed to a new one that will generate an interesting
algorithm?

(ii) Can the Euler method with variable stepsize that is used in Kar-
markar's projective method be replaced with some other numerical scheme
that will generate interesting algorithms?

An answer to question (i) has been given by D. A. Bayer and J. C.
Lagarias in [ 13] and J. L Nazareth in (18], who replaced Karmarkar's vector
field with the affine eecto,- field. Question (ii) has been considered by N.
Karinarkar. J. C. Lagarias, L. Slutsman. and P. Wang in [19]. where they tried
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to approximate the path .t. (1/n )e) with a power series expansion, obtaining
encouraging practical results. In this paper we give two new answers to
questions (i) and (ii)- in fact, we propose a vector field which is different
from the ones previously considered, and we use a linearly implicit A-stable
integration scheme (141 to solve the initial value problem considered. In this
way we obtain a quadratic-ally convergent -algorithm for linear programming
problem. Moreover our algorithm shows good practical behavior.

In Section 2 Karnarkar's projective method is interpreted as the numeri-
cal integration of an initial value problem with Euler's method and variable
stepsize. Moreo'er. to a linear programming problem in canonical form with
normalized objective function is associated a new system of ordinary differ-
ential equations. If we assume that the solution of the linear programming
problem is unique. this solution can he obtained as the limit point of a
suitable trajectory of the system of ordinary differential equations.

In Section 3 an initial value problem for this system of ordinary differen-
tial equations is integrated numerically, usine a linearl implicit A-,table
method with variable stepsize. It is show-n that this is a quadratically
cof\ergent algorithm for linear programming.

Finall.. in Section 4 we compare the computational cost of our step %ith
that of Karmarkar's projective algorithm and that of the simplex alorithm.
and we present some numerical experiments.

2. THE USE OF ORDINARY DIFFERENTIAL EQUATIONS
IN LINEAR PROGRAMMING

Let xT =(x.x_ ." R "" e gien b% X* =((X,)

Diai(x*). that is. X, = x 5,. i.j = 1.2.... .\here 6, is the Kruneckcr
s vmbol.

Dt:Fi\rri0\ 2.1. A minimizer x* of the problem (1.1)-(1.4) is called
nondegenerate if it has exactly n - in - I null components.

Let J, = (1.2.. ... and S= (ss ...... s . in I n. be an ordered
set of indices such that S g ],,. Let z = (Z -. ..... :,) R be a \ector. We
denote by z, the %ector z, = (:,,,. z,_) . R -'. Moreover. ,i'en a
\,ector v e R"' and a matrix Q E R( ' 1.'" of rank ti - 1. we denote h\ Q\
the submatrix Q, = [q".q': .. q""] G R' )"' - 1.. ",w'here qI is the jth
column of Q. If B is an ordered set of indices such that B C . and
N = A - B. then the sstem

Qz = v (2.1)
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can be rewritten in the following Fom :

QRzB + Q, = . (2.2)

DEFINITIO'N 2.2. Let B be an ordered set of m -- 1 indices. Then B is a
set of basic indices for the system (2.2) if there exists a matrix Q' E
R(mx"m< - -  and a vector , E R" such that the system (2.2) is equiva-
lent to the system

z+ , z, = v. (2.3)

LEMM.% 2.3. Let B be an ordered Yet of ti + I indices such that B is a set
of basic indicesfor the .systen (2.2). Then Qs IS a?' incertible matrix.

Proof. It folht)ws imnediatelx from the equixalence oF the linear ' stens
(2.2) and (2.3). a

Let a>O. x >O. x"= (xrj.x. ...... .,)"ER' . and X"ER. be the
matrix X' = Diag(x').

LEMMA 2.4. Let a ; 1 and x" be a nondegenerate minimizer of the
linear programming problem (1.1)-(1.4). Then AX"Ar is an invertible ma-
trix.

Proof. Let

.11 = [4] I EE"

be the matrix A with the extra rou,. eT added Since x* is a nondegenerate
minimizer of the problem (.I)-(1.4) and Af has rank m + 1. then there
exists an ordered set of m 1 indices B such that xq E R"' has all nonzero
components and x.\- E R" - 1 is the zero vector, where N = J. - B. More-
over. B is a set of basic indices for the system

Afy = u. (2.4)

where u E R'" is given and y E R Let X;'" E R4= .. x 1 be the
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matrix x"-Diag~x,*12 ). and XU2X.%*
1/2 E fl(n 1~) x(n - ) be the matrix

X.'2= Diag(x.," 2 ). that is. the null matrix. So from Lemma 2.3. Ma E

R~a* ) ( -1)is invertible, which implies that M aX,'1 2 is invertible. More-

over, since B is a set of basic indices for the system (2.4), we have

-(t .I~( BY/M (2.5)

Since MaI*1/ is invertible, from (2.3) it follows that IMX*MT' is invertible,

so that an easy computation shows that AXA AT is invertible. Therefore it

follows that AX *I/ is of rank mn. so that -LX ' is of rank in and AXWAT

is invertible. U

LEMMA 2.5. Let a = I or a = 2. and let x* be a nandegenerate

minimizer of the linear programming problem (IM1-(1.4). Then there exists
ps >0 such that .X.AAT is invertible for x EES(x*, p*). where S(x,p*)

(x E R" I N~ - x*Il (p8).

Proof. The proof follows immediately from the continuit\, of kX,,.Akr

with respect to x E R'. from Lemma 2.4. and from J. M. Orteea and W. C.

Rheinboldt (20. Lemma 2.3.2. p. 431. E

Let x = (x I Ix .... )r . R". let X E R"" be gi% en by X =Djiz~x): let

D C R'",~ in 4 n. be a matrix, and D the suhspuct!

D - =(x ERIDx=O0). (2.6)

and let n 0A ) he the orthoizonal projection on D -. The projector no0 .
alwva\s exists. and if 0 has full rank is gi-'en b%

f1.y=[~rDT )'Dj. v eR". (2.7)

Let r be

r=(x RnIX >.). (2-3)
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and f be its interio.

The set f is called At, positive orthant.
For a >0 and xe r let X',' 2 ER'" he the matrix X*

Diag(x*,' 2 .x*,/2 , . 3C:'1). We observe that ,,-. can alw-.ays be ex-
pressed in th~e for-m t1). In Fact, let r he the rank of the matrix *AX'V- if
r =mi, then ri AX' -'X- is given by (2.7). If 0 < r < in. we can consider the
matrix X E R "" obbied frurm A by eliminating the in - r rows of A with
indices equal to thaw of the -m - r rows of .AX* " that are linearly
dependent. Since (Ar'I)- vAa2 ) e ha,.e

n(.V ) fl,.. x-. (2.10)

-here f. is c~mby (2.7). Finall%- if r = Owe have that fl.x -,, I-

where I is the n x it idntity matrix Let h.,) E R "he the following vector
field:

h(x) ~X( I-e T  )R Xc). C xR". (2.11)

The vector field h(z) is known as Kannarkars vector field (2. 13]. Let
S(x*.p*) be the open ball of Lemma 2.5, and let us consider h(x) for

xEr us(x* p).
We obserme that Fi x e f U S(x* p*). AX is of rank n. Then h(x) is a

continuously differenble function of x for x u .. S(x*, p). Let A be giv en
by (1.8). and A be Own by

A;= . (2.12)

We will consider the initial value problem

dx
- = MO. (2.13)

%(O) - -e. (2.14)
n

It is easy to verify do (I/ Oe -
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LE%1M,4 2.6. Let

B= E

be the matrt AX with the extra row eT added, and let y = x/ 'n - 1).

where x e (0.1) is a parameter. For xk E A let

X = Diag(xk). Bk I-e

and let Atk be given by

At ( "~B-(XkC) 11e TX 11 B,-(XL C)) (2.15)

Then Euler's mecthod applied to the initial value problem (2.13). (2-14) trtth
variable stepvize .%tk giten by (2.15) produces thc sequence (xk). k =

0. 1.2..... generated by Karmarkar's alorithin [2. pp. 378-379] applied to

the linear programming problem with normalized objective function
(1.1)-(1.4).

Proof. We obser% e that .. tk > 0 for xt . (see [2. Theorem .5. pp.

381-382]. so that. integrating (2.13). (2.14) with Euler's method and variable

stepsize AtI. we ha.e

x"=-e (2.16)
II

k' =xk + .. tkh(xi) k = 0.1.2..... (2.17)

The thesis follows from a straightforvard computation. U

For a > 0 let

g(x.a) = fl1. ( X ' 2 c). r r. (2.18)
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We note that for a = 2. g(x.2) is the affine scaline factor of[1.31. and

g(x.2) - ,..(Xc) (2 19)

can be defined for x C R" so that

h(x) -X(l-eerX)g(x.2). xE R. (2.20)

We have

TIE(-RL\i 2.7 For 0 < a 4 2 let x E k be a feasible point for the linear
programmow problem with nonnali:ed objecticc function (1.1)-(1.4). Then

fl, ,.(X 2c) =0 (2.21)

.:,..: d i f a , m ,n izer of ic linear programmina problem with
nonafl l 1ied .ob 3;ctite functio ( 1.1 )-(1.4).

Proof Let x = Xe be a minimizer of the problem (1.1)-(1 4) with
normalized objecti\e function. Then

R'I.x- )-.(XO/"c) 0. (2.22)

In fact, if we assume that

ln.,x. -,.(X' 2 c) '. (2.23)

then 'hert, exists z = (. .. :,)e R" such that

a,,r , -=0. i= 1. m. (2.24)

that is. z E (.4.LA2 ) and

c)x -' j 2: 0. 8 . (2.25)1-
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that is, X*' 2 c is not orthogonal to z. We can assume without loss of

generality 0 > 0. Let us define

u% = X7/2",: j, 12..... n. (2.26)

Since 0 > 0, there exists j such that wt * 0. If w, 4 0 for j = 1.2.... n. we
choose z > 0: otherwise we choose E as follows:

0<E< a in X (2.27)

j. cc,> 0 W)

We recall that xs > 0 for j = 1.2... n Let

tV = Xj - Ew, j = 1.2.- n. (2.28)

From (2.27) we have

L~j > 0. j= 1,2. n. (2.29)

and

Vtj > 0. (2.30)
1'.

Let us define

j= j = 1.2 ..... n (231)

The point u = u ...... u)r is a feasible point; in fact.

Au - 0. (2.32)

e TU= 1. (233)

u > O. (2.34)



QADATICALLY CONVERGENT METHOD 267"

Moreover.

1

e .

--- ( J, - E CXa "2)

n T

= C cJ - E43 = (x ) (2.35)eTv J . I "~ (C

Since x has been assumed to be a minimizer of the linear programming
problem (1.1)-(1.4) and the objective function is normalized, we have

cT x = 0. (:2.36)

Therefore the objective function assumes a negati'e value at u. and this is
absurd.

Let us assume now that x E A and that Equation (2.21) holds. We will
show that x = Xe is a minimizer of the linear programming problem with
normalized objective function (1.1)-(1.4). In fact. from (2.21) we have

eTxI -*/n -"/20 =' (A ,I)x-- ( " -- 0.(2.37)

Using X instead of A as in (2.10), when A.4X' 2 is of rank less than m we
have

0 = eTX- 1 a-. (X°"O/ 2c)

TerxI-a"[ I Xa.'2r.(. Ar)-'A,*/2JX*':

= erXC-erXAr(AXaAT) -'.kXc = eXc = cTx. (2.38)

Therefore we have that x is a feasible point where Crx 0 , that is. x is a
minimizer for the linear programming problem with normalized objective
fiunction (1. )-(I.4). U
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Let I be the set given by

= {x E R"IAx = 0, era - 1). (2.39)

LEt.%,. 2.8. Let x* be a nondegenerate minimizer of the linear program-
ming problem with normalized objective function (1.1)-(1.4). and let h(x) be
gien by (2.11). Then we have

h(x*) = 0. (2.40)

Moreover.

Ah(%) = o, X E 1. (2.41)

eTh(x) = 0, x E _. (2.42)

where 1 is given by (2.39).

Proof. In fact for x E 1we have AXe = 0. eTXe = 1. and

AX.-l(,Ax _(Xc) = 0. so that

Ah(x) = - ,-Xfl (Xc) + .-LeeT XFl. X-(Xc) =0 (2.43)

and

eTh(x) =-erxFI(AX)( Xc) +erXeeTXlnx .(Xc) -0. (2.44)

Moreo'er. from Theorem 2.7 %%e have (2.40). U

Let x E R". and E, I R .' .be the matrix gi, en b%

E, = Dia(n,A.,,.(Xc)). x(=-- (245)

Let ]I,(x)e R"" be the folluwing matrix:

Jh(x) = I - XeeT)x'i,.A,(,X- EI-[erx'i .,,_(Xc)]l. xE R

(2.46)
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For x e R" in (2.46) %%e will use A instead of A. as in (2.10). when A0: is of

rank less than in. An elementar\ computation 5hous that the matrix

x .. can he defined for x E R" so that Jh(x) is defined for x E R".

Let

y = (Xe "IAX2 A is invertible). (2.47)

For x E -. Jh(x) is the Jacobian matrix of h(x) with respect to x. Morteer
let S(x*.p*) be the open ball of Lemma, 2.3: \e obscrxe that for x E t U

S(x*.p*). since AXV is of rank in. the niatrix X1 , \ _X - ' is well defined

and continuous. So Jh(x) is continuous for x E r [ S(x*.p*). and since

l A.(X*c) - 0. we have

]h(X*) = 0. (2.4S )

From Lemma 2S. we conclude that any solution %* of the linear pro'gram-
ming problem with nurmalized objective function (1. t)-( 1.4) is an equilib-
rium point of (2.1:3). that is. h(x,) -0.

Howe~er. due to the singular Jacobian of h(x) at x* [that is. to (2.48)]. the
use of a linearly implicit A-stable method to integrate the initial value
problem (2.13). (2.14). as suggested in [8] in the context of nonlinear
programming, will not produce a quadratically conmeraent method for linear
programming. To overcome this difficult\ we introduce a new% vector field

x)E R" defined for x e R" given by

f(x)= -(I Xee)[XCXAT(kXkT AXc x eR". (2.49)

where we use A instead of A. as in (2.10). if _LVAT A is of rank less than m.

Let us consider Rx) for x E t.US(x*,p'). We observe that A.'A is
invertible From (2.49) ,e have that fRx) is a continuous]\ differentiable
function of x for x - r u S(x*. p*). For later purposes %,e observe that Rx) for
x E r can be rewritten as follows:

f(x) = -I(i - Neer).x/ 2 l.,( x'l c). xe re (2.50)

Or

f(x) ffi I - X-( - eerX;2 )g(x. 1), x er. (2.51)

From Equations (2.20). (2.51) and Theorem 2.7 it follows that if x" is a

kd
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minimizer of the linear programming problem. then f(x°) = h(x°)= 0. that is,
x* is an equilibrium point of the vector fields h(x), Rx). For x E A the vector
field Rx) can be obtained as the steepest dcscent vector associated to the
function crx with respect to a particular metric. [n [13] D. A. Bayer and J. C.
Lagarias have introduced the idea of looking at Karmarkar's vector field h(x)
in terms of steepest descent directions.

Let x, be a feasible point of the linear programming problem (.1)-(1.4),
and Fo be the affine subspace

F, = X0 + (v E a "'Av = 0. eTV = 0). (2.52)

LEM--I 2.9. The cector fwld Rx) given by (2.31) is the steepest descent
rector associated to the objective function b(x) = cTx of the linear program-
ming problem (1.)-(1.4) restrtcted to F. r) t with respect to the Riemannian
metric G(x)= X-' = Dag(x-'). defined on the positive orthant r. where F.
is giren by (2.52).

Proof. We consider the following transformation for x E F, n F.

G X"'2 . (2.53)

We have

b(,(.v)) X 2 \x-c,! T v, " "'

and Fo assumes the following form.

FO =., -,(u -R"AX u = 0. erX'I"u-0}. (2.5)

The gradient ,,ector of b(x(. )1 .ith respect to y is

ab
= x1/2c. (2.56)

The gradient vector ab/dy projected on ' j is gi.en by

4l= n AN , , ]. x ' : ) (2.57)
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where we use A instead of A. as in (2.10). if A.XA' is of rank less than in.
Since -tXe = 0 from (2.57). using (2.7) we have

S= X'I,
2 c- X I I AT('AXT) - I.k:c- X I/2eeTXc. (2.58)

Since erXAT(AXAT) - IAXc = o, we have

g= (- Xi/ 2ee r x ,/2 )fl.x _.,_(X 2c). (2.59)

Finally. appl\ing (2.53) to g. %%e have that the gruditnt \ector ;(x) is giken
by

;(x) =X "- X ,'2(tI_-X l ' "-2ee X ') , \ :. X1 c) (2.60)

This concludes the proof. U

Let A be gi'en b\ (.3).

LExlx,. 2.10. Let x E A. and r be the rank of die matrix kXAkTA. Then

F1 ,21 ,(X'i 2 c) =(I - X: " r-2) (X' -c), (2.61)

where we use A instead of A. as in (2.10), when r is less than in.

Proof. Let 0 < r 4 m. The projector l AX' I- is defined as follows:

(2.62

n[ .l 2 ([eX 12 ' 2 ] T 1X' -2]- 2

Let us compute the matrix

1/2 1"
e Tx1X/2 ieX 1/2
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Since AXe = 0 and erXe = 1, we have

(A'XAr) I . (2.63)

An elementarN computation gives us

n[ X1,,:(x"2 c) = x"-c- X I'AT(.4AAT)'. \Xc- X1/2eeTXc. (2.64)

From er.AT = 0 we have

q = XI/leeTx AT( .AT) A_c 0 (2.65)

and

I 2]] -( (X'c) = fl.., :.( X-c) - Xu/2 eerXl/2 c -q. (2.66)

With an eas' computation from (2.66) me obtain (2.61). Let r = 0. and
0 e R .. be the null matrix. We ha -c that

[ OT 1 2 = (e X ' ) -  and ri 0. = 1.

so that (2.61) holds. U

LEt\,'i'i 2.11. L't x" be a'nonde'generate minimizer of the lincar pro-
graurnio problem w'ith nonnalized objectice fjnction (1.1 )-( 1.4)Y let ffx) be
given by (2.49) and 1 be given by (2.39). Then we hate

f(x.) = 0 (2.67)

moreoter

Af() =0. x E 1. (268)

erf(%) =0. x E 1. (2.69)
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Proof. Let a = 1. From Theorem 2.7 we hae

[I.&x.,' ( X~l'c) = 0. (2.70)

so that

f(x*) =0. (2.71)

Let x e 1. Since ALe = 0 and erXe = 1, we have

Af(x)= -(A -.-XeeT)I X[c- x.AT(AXAT) -'.aXc]= 0 (2.72)

and

eTf(x) = -(er-erXee T)[xc - N:,T( A X_T )-'.c] =0. (2.73)

This concludes the proof. U

LE 1%1-, 2.12. Let R x) be given by (2.49). and x, e R' be such that

Ax 0 = 0, (2.74)

eTxu = 1. (2.75)

Then the solution x( t) of the initial talue problem

dx
-T = R ). (2.76)

x(O) = x0 (2.77)

satisfiAW the constraints

Ax(t) = o, (2.78)

erx(t) = 1 (2.79)

for all values oft where x(t) is defined.
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Proof. From Lemma 2.11 we have

dx
A-- Af(x) =0. (2.80)

Tdtrd x

e - erf(x) = 0, (2.81)

so that the thesis follows immediately from the assumption (2.74). (2.75) on
x0 and the fundamental theorem of calculus.

For x E R" let E E R"" be the matrix given by

E = x R . (2.82)

and C E R" " be the matrix C = Diag(c). Let J(x)- R" Xn be the following
matrix:

(x)=[t--T(.XAT)'AXeer](C-E)(erX)l .- R".

(2.&3)

where we use A instead of A. as in (2.10). if A.XAT is of rank less than m.
Let Y' be the set (2.47). An elementary computation shows that for x e Y,
/(x) is the Jacobian matrix of Rx) with respect to x. Moreo\,er let S(x*, p*) be
the open ball of Lemma 2.5. We observe that for x E f U S(x*. p*). since the
matrix _AT is in~ertible, J(x) is continuous for x E r U S(x*.p*).

THEOREM :L13. Let us assume that the linear programming problem
(1.1)-(1.4) has a unique nundegenerate minimizer x*, and let J(x;) be giten
by (2.33). Then J(x*) is inrertible as an operator restricted to the subspace[A1. That is. J(x*)v 0 for each v*O such that

e r 4
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Proof. First of aiw show that for i = 1.2 ..... n we have

(C-E),. 0 if and only if x, * 0.

Let X" = Diaq(x'). FumTheorem 2.7 for a = I we have

X, -E) Di((f . (.'" ))) = 0. (2.S4)

Since C - E is a diam matrix. from (2.S4) we have that X,, r 0 implies
(C -E),, = 0 for i =NL....n. Let us show that (C - E),, = 0 implies
X,* : 0 for i = 1,2.. w In Fact if we assume that there exists h such that
(C - E)I,h = 0 and x,*-= then from the assumption that x* is a nondegen-
erate minimizer of thelmrr programmina problem (1.1)-(1..4) it follows that
there exists a pivot tisformation that makes the hth component of x*
nonzero. Let v* be tlb"ww basic feasible solution correspondiniZ to x" via
the pivot transformatimL Since onl% one pi-tot operation has been made. the
nonhasic componentsier than the hth component are still nonbasic. that
is, y,* = 0 for each i *4 such that x,* = 0. Let Y*= DiaL.,( y,*yy).
From (2.S4) we have

Y-(C- E)=o. (2.S5)

Moreover, since eT' .- 0. from (2.85) we have

0=eTy*(C - E)e=JTIaCe-eTY*AT(.-U*. ) : A"c=eTY c=cTV* .

(2.86)

Therefore y* would heanew minimizer of the linear programming problem
(1.1)-(1.4). different fit z. and this is absurd.

We have J(x*) - =C - E)-. In fact it is obvious that v E (C - E)
implies v - J(x*)-. Nm'er. let

.A, +rXA( . T a ) -'A _-eer] (C - E). (2.S-T)

Then

tIm(()- ( - E) -X *M, (288)

SO that J~' -0 imlln (C - E)v - X *My . Since N' is a diagonal matrix.
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we obtain (X*Mv), = (X),(Mv),. i = 12..... n. We have two cases:

(i) X,; = 0. which implies ((C - EM, = 0:
(ii) X,*, 0, which implies (C - E), = 0.

Summarizing, we have that ((C-E)=),=O, i=1.2.....n. that is. vE

(C- E) "
Now let u E R n be such that

Au = 0. eru = 0. (2.$9)

We assume that u ( J(x*) -: since x* e (C - E) -, then z = x* + u E J(x) .
.Moreover.

Az = 0, eTz=1, (2.90)

and z-J(x) - implies zE(C - E). If z E(C- E)-. then z, =0 for each
i such that x," = 0: this condition. together with (2.90). is a characterization
of the minimizer x* of the linear programming problem (1.)-(0.4). There-
fore u = 0. This concludes the proof.

TiE, RE\, 2.14. Let x* be the unique nonde,-enerate rinimi:er of the
linear programming problem with nonalized objectice function (L.1)-(1.4).
and RX) be given by (2.49). We consider the initial calue problem

dx
- = fx). (2.91)
dt

1
x(0) = -e. (2.92)

Then a solution x(t.(/n)e) of (2.91). (2.92) exists for t E [0.x). and

rm x t. -e = x (2 9.)

Proof. The standard existence and uniqueness theorems for the initial
value problem for ordinary differential equations guarantee that the solution
of (2.91). (2.92) exists locall, From Lemma 2.9 it follows that Rx) is
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tangential to 8.A. so that from Lemman, 2.12 and the fact that (l/n)e E .' weo

have that x(t,(I/n)e)e A. Moreover for x E A we hae

d.) T d I 
y c X .e~ c - -Ix -c <0. (2.94)

that is. the objective function crx is monotonicall\ decreasing along the
trajector. xt.(l/n)e). Since the minimum of crx on A is zero. x* is the
unique minimizer of crx on A. and Rx*)= 0. from G. Sansone and R. Conti
[21, p. 311 we have that x* is the unique limit point of xt.(l/ne) and

lim xt, e)=x. (2.95)

This concludes the proof .

3. THE QUADRATIC ALGORITHM FOR LINEAR PROGRAMMING

Let X ( Rn. Dc R" be an open set. and D be the closure of D; let
w: D c R" - R" be a function continuously differentiable in D. whose
Jacobian matrix is denoted by Q(x} - w/ax. Let us consider the initial
value problem

dx
- = ,(,). (3.1)
dt

x(0) x,. x41 e D. (3.2)

Let I be the n X n identity matrix. hj > 0. k = 0.1.2 ..... be a sequence ofstepsizes. and tk E h, Then any solution x(th) of (3.1). (32) can be
approximated with xi computed as follows:

X (I, X0. (3.3)

[1-h,Q(,,)1s ,- hw(xk) k - 0. 1. ... (3.4)

X'k' m X +sk. k -0. .2.... (3.5)
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The numenc-a] scheme (3.3)-(3.5) to integnte the initial value problem (3.1),
(3.2) is A-stable and linearly implicit, and has.heen studied by J. D. Lambert
and S. T. Sigurdsson in [22.

Let R) be the vector field given by (2.49), and J(x) be its Jacobian
matrix given by (2.83). We will apply the numerical scheme (3.3)-(3.5) to
the initial value problem

dx
-T = X). (3.6)
dt

X(O) = -C (3.7)
n

considered in Section 2. Let t be gien by (2.9). B%, Lemma 2.5 there exists
a neighborhood S(x.p*) of x* such that Rx) is a continuously differentiable
function in F . S(x*.p*).

LE'.,ta. 3. 1. Let x* be the unique rninitnzer of the linear programming
problem with nurmali:ed objective functun (1.1)-(1.4). Let us apply the
numerical schemc (3.3)-(3.5) to the initial ralue problem (3.6). (3.7). More-
oLrr let

h,*(erXc) - '  for k = 0.1.2.. (3.S)

l-hj(xk) beinvertible for k =0.1.2... (3.9)

Then the sequence (x -I, k = 0. 1.2..... g ncratcd by (3.3)-(3.5) exists. and
sk satisfies

Ask ="0. k = 0.1.2.. (310)

eTs =0. k =0.1,2. (.3.11)

Proof. We note that %"=(l/n)e is a f. oible point of the linear
programming problem (1.1)-(1.4) and that s' is defined by

[I- h1j(x's' - hkf(,) k 0.1.2....

In Lemma 2.11 it has been shown that if z' is a feasible point for the linear
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programming problem (1.1)-(.4), we have

Af(xk) =0, (3.13)

e'f(xk) - 0. (3.14)

so that applying A to both sides of (3.12). we obtain

A[I- h&J(xk)I sk = 0. (3.15)

From (2.83) we have

.AJ(xk) = (eTX~c)A. (3.16)

Therefore %-e have

I - h k(eTXk c)lAs' = 0. (3.17)

so that from (3.8) we have As' = 0. k = 0, 1.2.
Mloreo, er it is easy to yen fv that

eTj(xk) -(erXkc)eTI. (3.18)

SO that from Lemma 2.11 we have

J[I- h&J(x&)I sk = 0. (3.19)

which implies

[ I- h, (erX, c)]Iersk = 0. (3.20)

SO that from (3.8) we have eTSk 0. k -0. 1,2,..

Let D C R" be an open set and Do C D be a con% ex set.

DEFINITIo% 3.2. Let w(x): D 5;R - R* be a continuously differen-
tiable finction. Let 9 r= R'. DI be an open neighborhood of 4, and T: D x

D4C R" X R- - L(R-). where W")I is the set of the n X n matrices. Then
T(-is a consistent approximation to the Jacobian matrix Q(f of w(x) on
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D o c: D if 0 E R' is a limit point of D, and

lira T(x,. Q(x) (3.21)

1-0
teD4

uniformly for x E Do. Moreover. if there exist two constants c > 0 and r > 0
such that

IIQ(x)- T(x. 9)I V 1< i. (3.22)

for each x E D,, and 4E D,(S(O.r), where S(O.r)=(g e R"'Ii;I < r,
then T(x. g) is a strong]y consistent approximation to Q(x) on D,.

LE\\i,% 3.3. Let DgRn be an open set. and w: DC_ R"- R" be a
continuously differentiable function on the convex set D, C D. Let QW )E
Lip,( D,). that is. let Q() be a Lipschitz continuous function for x E DU with
Lipschitz constant y ;: 0. Then

y
-1 (y) -w(%) - Q(x)(.v- -)!I1 'Y -;'x - yil" (323)

for each x. v E D,

Proof. See J. M. Ortega and W. C. Rheinboldt [20. Theorem :32.12.
p. 73]. U

Titi)Rt,,i 3.4. Let x* be the unique nondezc'ie'rate minimizer of the
linear pro,.rainming problem with normalized obiec:iue function ( 1.1)-(1 4).
and let

and B - be zrteii by (2.S). Moreover. let fR) be gicen by (2.49). and

h= R%, k = 0. 1 2..... (324)

where a, > a>0 is a bounded sequence vuch that h= * (eTX c) "'. Then
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there exists p, > OM open nei h orhood S(x*.p,) = x e R"lJ - xi*N <

p,) of x" such thalt. eS(z.p,)r . uwhere 1 is given by (2.39). then the
sequence xT k =M . am- rated by

x" = ,,.(3.2.)

[I - h,.dz-' -,r ) = hi R(x ). k = 0.1.2 ..... (3.26)

where J(x) is W,_iten M) and the lineur system (3.26) is suh ed in B -. is
well defined. x ' *Wp)ll 1 for k = 0. 1.2 ..... and x). k = 0.1.2 .....
conteres quadratic" e.

Proof. We arsoiduction on the index k. Let

I
& k =0.1.2.. (3.27)

and

c(. J+ - t+J(x) k =0.1.2... (32S)

We observe that (3io be re'ATitten a folows:

- (- -x I) = f(XP ). k = 0.1.2..... (3.29)

It is eas\ to see tli&) is a strongl. (.otnistent approximation of J(x) on
f when f goes toam We hae seen in Lemma 3.1 that if v E R' andXK e we have

, ,,. (e) X = Ce'x, - f, )AV, (3.30)

".'.f), = (e'.,, c - fk,)e TV.(3.31)

From (3.24) and CM Dows that , * eTXkC for k = 0.1.2,..., so that
we have

41JE B- if and only if v E B. (3.32)
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From Theorem 2.13 we have that J(x*) restricted to B " is invertible and

111[J(,*)]18i2[J(,,.) - ow-,, l is )11.] < 1 (3.3)

for xk e S(x*,p,) in a suitable neighborhood of x* and fk in a suitable
neighborhood U of zero. The perturbation lemma (see J. M. Ortega and
W. C. Rheinboldt [20, Lemma 2.3.2. p. 45]) implies that the inerse of the
linear operator (xk,) restricted to the subspace B exists when xk E

S(x*,p 1 ), C, r U. From Lemma 2.11 we have that x k E implies R1 &) E B -.
When x k S(x*.pj)r)! and k EL', from the fact that R&)E B - and
(3.32), (3.33) it follows that x-' is well defined and xk -' -. Moreover
there exists -q7> 0 such that

and we have

Nb - -,.1 = II(,.,1-[(' ,), ,)-f,)

-4 7(11 O W , )J - J( x , )11 +  1l A x 1) _ P (x .* 1 x ,

+ ,77i f(x*)- f(x) - J(x*)(k -)x*)i. (3.35)

Since we can always choose pI > 0 such that J(x)C Lip.(S(x p,)) for some
y > 0. from Lemma 3.3 we ha%,e

'  -*ll < .,77tl -x:l+ 7y1, % -xi*- + -X- 12

4 W(KI , k -" XI l (3,36)

where

w(x',k)= 17fk + 17YIIXk -xll. (.3.37)

The neighborhoods S(x'.p,) and U can be chosen in such a wa, that

W(X , - ,X< 1. 1kEs( p,)n*. . (3.38)
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From (3.36) and (3.38) we have

X411 -x < XU'x -. 01. xL. (- S(X'. P,) r) 1. (3.39)

Therefore xk- I E S(x*.p,)r ) . Moreuer 'we have

!Ix -x*I < x, -lix" - xIL, (3.40)

so that the iterates (W), k = 0. 1.2 ..... given by (3.26) --e well defined if
x" E S(x*.p )n 1 and

lim xL = x*. (3.41)

Moreover. since Rx) is a c ntinuouslk differenitiable function in a neiahbor-
hood of x* and Rx*) = 0. there exists a constant .1 > 0 such that

If(x)I..~xL-xii. xL ES(.X ,) (3.42)

From (3.24) ,e obtain

fk < E=- -~ l, x S(x*. , ) n r) . (3 .43)

That is. the sequence x&) converges quadratically to x'. This concludes the
proof

4. NUMERICAL EXPERIMENTS

We begin b% comparing the computational cost of a step of the algorithm
introduced in Section 3 with that of a step of the simplex algorithm or of a

Step of Karmarkar's algorithm.
We consider the linear programming problem in the canonical form

(1.1)-(1.4). It is easy to verify that the computational cost of a step of the
simplex algorithm is given b%

mn + lower order terms (4.1)
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The computatin~os of one step of KArrnarkar's algorithm is essentially
due to the computiof the matrix

.A.X2 AT (4.2)

and to the solution Affi mX mn linear system

(.A?2.Ar,)v = -LVC. (4.3)

Since the matrix AM i s svmmetric. its computation requires

m 2n
-7-+ lowver order terms (4.4)

elementary operatm while the solution of the linear systen (4.3) requires

M I
- + lowver order terms (4[.3)
6

elementary operatim Since m < n. we c-an conclude that the computational
cost of one step offismrkars algzorithm is rouizhl%

in+ low-.er order terms (4.6)

elementary operatn This cost can be reduced using somne special proce-
dures. for examplum W1 Karrnarkar has show,%n that the use of sucessike
rank-one mod fcai t compute (4.2). (43) reduces the -a'erace- co)mpu-
tational cost of eaclp to

cnl- - lo"ver order terms, (4.7)

elementary opertm for some constant c > 0.
The computatidkot of one step of the algorithm introduced in Stcction

3 is essential% duea~e computation of the matrix

(4.S)
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to the solution of the linear s5steni

(.- - r )y = .- 'c. (4.9)

to the computation of the matrix

Ar( AXA r ) -tA (4.10)

that appears in the expression of the Jacobian J(x) (2.S3). and to the solution
of the linear s.stem (3.26). The computational costs of (4.S). (4.9) are
analogous to those of (4.2). (4.3) respectivelk. Mureoer the computational
cost of the solution of the linear systein (3.26) is

- lower order terms ( 4.11)
.3

elementan opcrations.
In order to compute (4.10) we use the Cholesk? decomposition of _L\LAT.

that is,

,L"A-r = LLT .  (4.12)

where L E R'... is a nonsingular lower triangular matrix. So we have

S,AT)- = ( L - (4.13)

and

At( AA r ) - 'A - ( L-.)T(L-A). (4.14)

Since in order to compute L -'.A

m 3  mn1n

- + - + lower order terms (4.15)
6 2

elementary operations are nevensar%., and the matrix (L-.A)(L-A) is



286 S. HERZEL M C. RECCIIIONI. AND F. ZIRILLI

symmetric, the computational cost of (4.10) is

m2ri
- + lower order terms (4.16)2

elementary operations. Since m < n. we can conclude that the computational
cost of one step of the algorithm introduced in Section 3 is

1.3 3J
-n+ lower order terms (4.17)

elementary operations. Moreover, if we use successive rank-one modifica-
tions, as proposed in [2]. we can decrease the "average" computational cost of
each step to

c'n2 s + lower order terms (4.1S)

elementary operations. for some constant c'> 0. Moreover. to improve the
value of c' it is possible to use any combination of the ideas proposed in (7.
2.3. 241.

To conclude, the computational cost of one step of the algorithm intro-
duced in Section -) is of the same order as that of ore step of Karmarkjrs
algorithm, while one step of tlk, simplex aliorithm is much cheaper. Hov.-
ever, due to , .'.idratic convergence of our algorithm. .e expect that the
nurbe- f it-. .ns needed to solve a linear programming problem to a
given accuracy should be approximatel\ indept-ndent of thc problem size n.

We present now some numerical results that support our expectation
The algorithm described in Section 3 has been implemented using t ,o
special expedients to a~uid failure due to the ill-conditioning, of the problem
considered.

The matrix A E R" ". zi'en by (1.2) is replaced with the matrix A C-
R .... to reduce its condition number. A is obtained usine the singular %alue
decomposition of LAr This decomposition has a computational cost of ord r
n 3. so it costs the same as one step of the alzonthm described in Section 3
Let AAr= QrDV, be the singular value decompositon of .Lr: then the

matrix A is given b,

A = (QrDV).)A. (4.19)

where D E R.... is a diagonal matrix such that ( D'),, = I/D,, if D,, >0
and(D),,= Iif D,=0 for iL ....
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In the first k1 steps of our algorithm (k1 .5 in our numerical experi-
ments). the Riemannian metric

G(x) = X - ' = Diag(x - ') (4.20)

is replaced with

C1(x) MkX (4.21)

where M, = X = Diag(xi - ) and xj is the current point at step k. We note
that in order to apply our algorithm is not necessary to ha-e a normalized
objectixe function-that is. is not necessary to kno\\ the ,alue of the
objective function at the minimizer. Hoexer. in our numerical experiments
we use test problems with normalized objective function. The stopping rule
used is

v/k=crx _< 1.OX -10 c _). (422)
n

We have considered ten tcst problems Problem 1 (Z I R 1) is a problem
coming frrom the operation of an industrial plant in central ltal\,. The other
problem+ come from the S\stem Optimiz-ation Laborator\ at Stanford Uni-
versitv and have been made a\,ailable to us through \ETLIB [25]. The
numbers of variables (n) and of constraints (in). show-n in Table 1. are those
relative to the problems in canonical form. Finally, k denotes the index of the
first step that verifies the stopping rule (4 22).

We note that in Table 1. while n. m %ar by an order of magnitude, the
number k of steps needed to solve the problem varies only b% a factor of two.
Moreover. test problems with n. in < 5 are solved in about ten steps.

TABLE I

Test problem m n k V,

1. ZIRI N304 _43 21 2 .4l1-10
2. ADLITTLE 57 141 21 3 .16r-09
3 AFIRO 2S 54 12 1 52t-12
4. SEACONFD 173 2- 20 3. 9 1D-09
3. BLEND 75 117 21 1.47 -12
6. ISRAEL 175 319 17 1.94D-10
7 SC105 106 166 13 1.36n-1
S. SCSOA 51 51 14 1.48r-14
9. SC5O 51 81 11 7 .S-4&-10

10. SMARE2B 97 167 21 1.7 8D-10
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The algorithm has been coded in FORTRAN and tested on a VAX/VMS
Version V5.1 in double Precision arithmetic.
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